How do you solve #2(x-1) + 3= x -3(x+1)#?

2 Answers
Mar 2, 2018

#x=-1#

Explanation:

#"distribute brackets on both sides of the equation"#

#2x-2+3=x-3x-3#

#"simplify both sides"#

#2x+1=-2x-3#

#"add 2x to both sides"#

#2x+2x+1=cancel(-2x)cancel(+2x)-3#

#rArr4x+1=-3#

#"subtract 1 from both sides"#

#4xcancel(+1)cancel(-1)=-3-1#

#rArr4x=-4#

#"divide both sides by 4"#

#(cancel(4) x)/cancel(4)=(-4)/4#

#rArrx=-1#

#color(blue)"As a check"#

Substitute this value into the equation and if both sides are equal then it is the solution.

#"left "=2(-2)+3=-4+3=-1#

#"right "=-1-3(0)=-1#

#rArrx=-1" is the solution"#

Mar 2, 2018

#x=-1#

Explanation:

#2(x-1)+3=x-3(x+1)#

Open the brackets from both the sides

#2x-2+3=x-3x-3#

Bring all #x# terms on one side and the other terms on the other side

#2x-x+3x=2-3-3#

#4x=-4#

#x=(-4)/4#

#x=-1#