First, expand the terms in parenthesis on the left side of the equation:
#(-6 xx 4x) + (-6 xx 1) = 5 - 11x#
#-24x - 6 = 5 - 11x#
Next, add #color(red)(24x)# and subtract #color(blue)(5)# from each side of the equation to isolate the #x# term.
#-24x - 6 + color(red)(24x) - color(blue)(5) = 5 - 11x + color(red)(24x) - color(blue)(5)#
#-24x + color(red)(24x) - 6 - color(blue)(5) = 5 - color(blue)(5) - 11x + color(red)(24x)#
#0 - 11 = 0 + 13x#
#-11 = 13x#
Now, divide each side of the equation by #color(red)(13)# to solve for #x# while keeping the equation balanced:
#-11/color(red)(13) = (13x)/color(red)(13)#
#-11/13 = (color(red)(cancel(color(black)(13)))x)/cancel(color(red)(13))#
#-11/13 = x#
#x = -11/13#