Solve First Inequality
Begin by solving the first inequality:
#color(red)(3)(t - 3) + 1 >= 7#
#(color(red)(3) xx t) - (color(red)(3) xx 3) + 1 >= 7#
#3t - 9 + 1 >= 7#
#3t - 8 >= 7#
#3t - 8 + color(red)(8) >= 7 + color(red)(8)#
#3t - 0 >= 15#
#3t >= 15#
#(3t)/color(red)(3) >= 15/color(red)(3)#
#(color(red)(cancel(color(black)(3)))t)/cancel(color(red)(3)) >= 5#
#t >= 5#
Solve Second Inequality
Next, we can solve the second inequality for #t#:
#color(red)(2)(t + 1) + 3 <= 1#
#(color(red)(2) xx t) + (color(red)(2) xx 1) + 3 <= 1#
#2t + 2 + 3 <= 1#
#2t + 5 <= 1#
#2t + 5 - color(red)(5) <= 1 - color(red)(5)#
#2t + 0 <= -4#
#2t <= -4#
#(2t)/color(red)(2) <= -4/color(red)(2)#
#(color(red)(cancel(color(black)(2)))t)/cancel(color(red)(2)) <= -2#
#t <= -2#
**The Solution Is:
#t < -2#; #t >= 5#
Or, in interval notation:
#(-oo, -2]; [5, +oo)#